Qu	Answer	Mark	Comment
Section A			
1(i)	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	B1	Accept expressions in sin and cos
1(ii)	$\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$	B1	Ans (ii) x Ans (i) attempt evaluation
1(iii)	$\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$	
1(iv)	Reflection in the x axis	B1	
		[5]	
2(i)	$\begin{aligned} & \frac{z+w}{w}=\frac{-1-\mathrm{j}}{-4+\mathrm{j}} \times \frac{-4-\mathrm{j}}{-4-\mathrm{j}} \\ & =\frac{3+5 \mathrm{j}}{17}=\frac{3}{17}+\frac{5}{17} \mathrm{j} \end{aligned}$	M1 A1 A1 [3]	Multiply top and bottom by -4-j Denominator $=17$ Correct numerators
2(ii)	$\begin{aligned} & \|w\|=\sqrt{17} \\ & \arg w=\pi-\arctan \frac{1}{4}=2.90 \\ & w=\sqrt{17}(\cos 2.90+\mathrm{j} \sin 2.90) \end{aligned}$	B1	
		B1	Not degrees
		B1	c.a.o. Accept $(\sqrt{17}, 2.90)$ Accept 166 degrees
2(iii)	Im	[3]	Accept 166 degrees
		B1 B1 [2]	Correct position Mod w and Arg w correctly shown
3	$\begin{aligned} & \alpha+\beta+\gamma=4=-p \\ & p=-4 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	May be implied
	$\begin{aligned} & (\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & \Rightarrow 16=6+2 q \\ & \Rightarrow q=5 \end{aligned}$	M1	Attempt to use $(\alpha+\beta+\gamma)^{2}$
		A1	o.e. Correct
		A1	c.a.o.

4	$\begin{aligned} & \frac{5 x}{x^{2}+4}<x \\ & \Rightarrow 5 x<x^{3}+4 x \\ & \Rightarrow 0<x^{3}-x \\ & \Rightarrow 0<x(x+1)(x-1) \\ & \Rightarrow x>1,-1<x<0 \end{aligned}$	A1 A1 M1dep* A1 A1 [6]	Method attempted towards factorisation to find critical values $x=0$ $x=1, x=-1$ Valid method leading to required intervals, graphical or algebraic $\begin{aligned} & x>1 \\ & -1<x<0 \end{aligned}$ SC B2 No valid working seen $\begin{aligned} & x>1 \\ & -1<x<0 \end{aligned}$
5	$\begin{aligned} & \sum_{r=1}^{20} \frac{1}{(3 r-1)(3 r+2)} \equiv \frac{1}{3} \sum_{r=1}^{20}\left[\frac{1}{3 r-1}-\frac{1}{3 r+2}\right] \\ & =\frac{1}{3}\left[\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\ldots .+\left(\frac{1}{59}-\frac{1}{62}\right)\right] \\ & =\frac{1}{3}\left(\frac{1}{2}-\frac{1}{62}\right)=\frac{5}{31} \end{aligned}$	M1 A1 A1 M1 A1 [5]	Attempt to use identity - may be implied Correct use of $1 / 3$ seen Terms in full (at least first and last) Attempt at cancelling c.a.o.

Section B

7(i)	$(0,18)$	B1	
	$(-9,0),\left(\frac{8}{3}, 0\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [3]	
7(ii)	$x=2, x=-2$ and $y=3$	B1 B1 B1 [3]	
7(iii)	Large positive $x, y \rightarrow 3^{+}$from above Large negative $x, y \rightarrow 3^{-}$from below (e.g. consider $x=100$, or convincing algebraic argument)	B1 B1 M1 [3]	Must show evidence of working
7(iv)		B1 B1 B1 [3]	3 branches correct Asymptotes correct and labelled Intercepts correct and labelled

